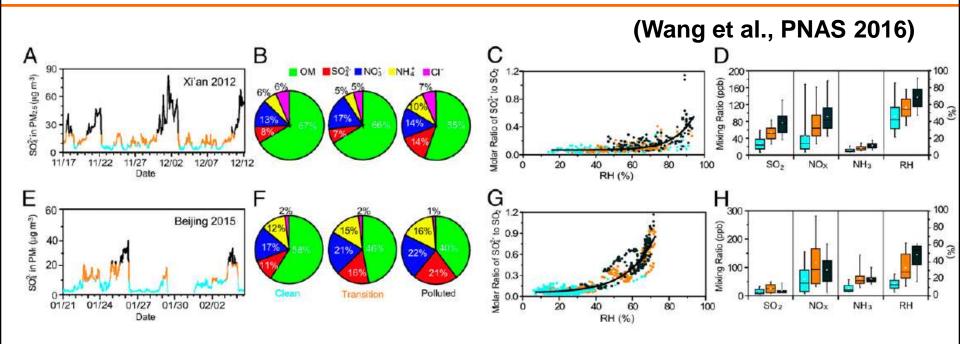
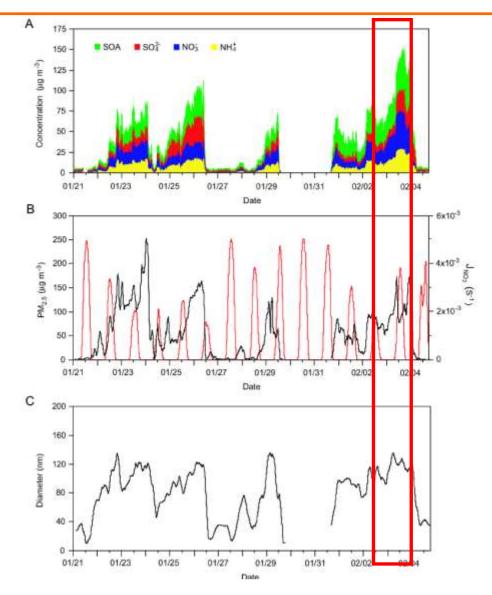

Aerosol aqueous phase oxidation of SO₂ by NO₂ in Chinese haze formation process

Gehui Wang, Jiayuan Wang, Can Wu, Jianjun Li

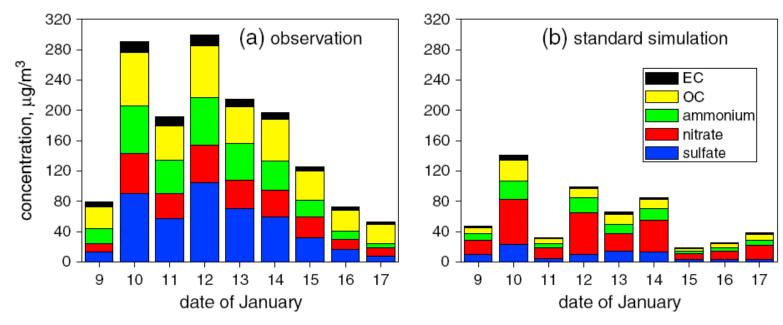

School of Geographic Sciences, East China Normal University, Shanghai, China

June 5-9, 2017 Guangzhou China

Hourly concentration of PM_{2.5} in China on December 20, 2016



Hourly variation of sulfate in Xi'an and Beijing: Significant aqueous sulfate production


- (1) Clean period : OM (organic matter) dominant Polluted period: inorganic SNA dominant
- (2) OM in Xi'an more abundant than in Beijing
- (3) Sulfate increased exponentially with RH
- (4) Rapid conversion of SO2 to SO42- in Beijing under lower RH compared to that in Xi'an
- (5) High levels of SO2,NOx and NH3 in haze periods along with high RH

Weak photochemical activity on hazy day: low ozone, reduced visibility

 $OH + SO_2 + M \rightarrow HO_2 + Sulfate$ **Gas-phase Aqueous phase** $HSO_3^- + H_2O_2 \rightarrow SO_4^{2-} + H^+ + H_2O_2$ (M4) $SO_2 + O_3 + H_2O \rightarrow SO_4^{2-} + 2H^+ + O_2$ (M5) $HSO_3^- + O_3 \rightarrow SO_4^{2-} + H^+ + O_2$ (M6) $SO_3^{2-} + O_3 \rightarrow SO_4^{2-} + O_2$ (M7) $SO_2 + H_2O + 0.5O_2 + Fe(III)/Mn(II) \rightarrow SO_4^{2-} + 2H^+$ (M8) $HSO_3^- + CH_3OOH \rightarrow SO_4^{2-} + H^+ + CH_3OH$ (M9) $HSO_3^- + CH_3COOOH \rightarrow SO_4^{2-} + H^+ + CH_3COOH$ (M10)

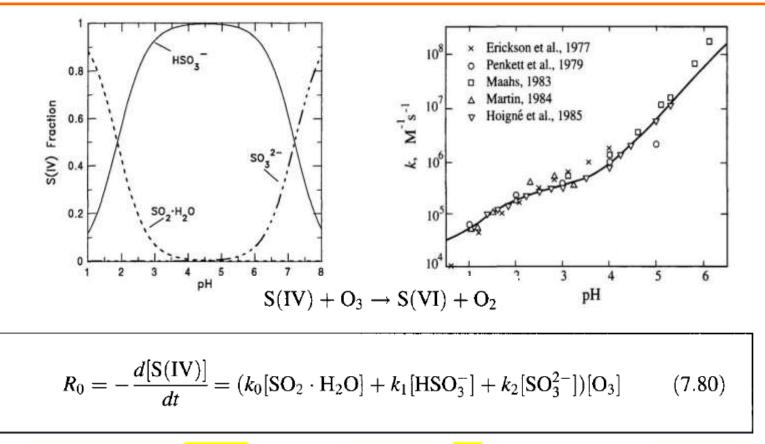
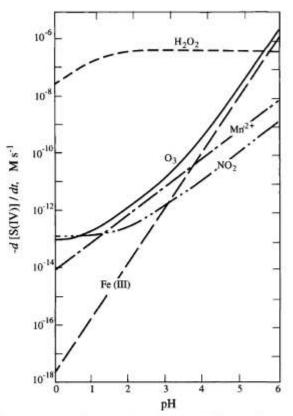

Wang et al., JGR 2014

Table 2.	A Summary of All the Simulations in This Study
----------	--

Simulation Name	Description
Standard simulation	Model standard simulation with the 2013 inventory
DoubleSO ₂ run	SO ₂ emissions from the standard simulation are doubled over NC and reduced by 30% over SC. Changes are applied uniformly throughout January.
Emission_run	Total monthly emissions of SO ₂ , OC, and EC (anthropogenic portions only) from the standard run are increased by 100% over NC; SO2 emissions over SC are reduced by 30%; NOx and NH3 emissions are the same as those in the standard run. The meteorology correction factors are applied on a day-to-day basis to emissions of SO ₂ , NOx, NH ₃ , OC, and EC over NC.
Gamma_run T1	Emissions are the same as in the emission_run; $\gamma = 10^{-4}$ when RH = 50%, $\gamma = 10^{-3}$ when RH = 50%; γ increases linearly with RH from 50% to 100% (equation (2)).
Gamma_run T2	Emissions are the same as those in the emission_run; $\gamma = 10^{-3}$ when RH = 50%, $\gamma = 10^{-2}$ when RH = 50%; γ increases linearly with RH from 50% to 100% (equation (2)).
Gamma_run T3	Emissions are the same as those in the emission_run; $\gamma = 10^{-2}$ when RH = 50%, $\gamma = 10^{-1}$ when RH = 50%; γ increases linearly with RH from 50% to 100% (equation (2)).

Acidity is key to SO₂ oxidation in aerosol aqueous phase

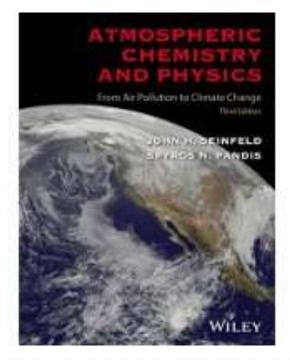


with $k_0 = 2.4 \pm 1.1 \times 10^4 \,\text{M}^{-1} \,\text{s}^{-1}$, $k_1 = 3.7 \pm 0.7 \times 10^5 \,\text{M}^{-1} \,\text{s}^{-1}$ and, $k_2 = 1.5 \pm 0.6 \times 10^9 \,\text{M}^{-1} \,\text{s}^{-1}$. The activation energies recommended by Hoffmann and Calvert (1985) are based on the work of Erickson et al. (1977) and are $46.0 \,\text{kJ} \,\text{mol}^{-1}$ for k_1 and $43.9 \,\text{kJ} \,\text{mol}^{-1}$ for k_2 .

(1) When pH>3.0, SO2 almost entirely exists as HSO3-, SO32-, <u>solubility enhanced</u>
(2) Oxidation rate also sharply increased

Classic Textbook : SO₂ oxidation by NO₂ is unimportant

317



S(IV)-S(VI) TRANSFORMATION AND SULFUR CHEMISTRY

FIGURE 7.19 Comparison of aqueous-phase oxidation paths. The rate of conversion of S(IV) to S(VI) as a function of pH. Conditions assumed are $[SO_2(g)] = 5$ ppb; $[NO_2(g)] = 1$ ppb; $[H_2O_2(g)] = 1$ ppb; $[O_3(g)] = 50$ ppb; $[Fe(III)] = 0.3 \,\mu$ M; $[Mn(II)] = 0.03 \,\mu$ M,

oxidation rates in µM h⁻¹ for the different paths at 298 K for the conditions

$[SO_2(g)] = 5 ppb$	$[H_2O_2(g)] = 1 \text{ ppb}$
$[NO_2(g)] = 1 ppb$	$\left[O_{3}(g)\right] =50ppb$
$[Fe(III)(aq)]=0.3\mu M$	$[Mn(\Pi)(aq)]=0.03\mu M$

We see that under these conditions oxidation by dissolved H_2O_2 is the predominant pathway for sulfate formation at pH values less than roughly 4–5. At pH \geq 5 oxidation by O_3 starts dominating and at pH 6 it is 10 times faster than that by H_2O_2 . Also, oxidation of S(IV) by O_2 catalyzed by Fe and Mn may be important at high pH, but uncertainties in the rate expressions at high pH preclude a definite conclusion. Oxidation of S(IV) by NO₂ is unimportant at all pH for the concentration levels above.

SO₂≠HSO₃⁻

Transition metal ions (Fe/Mn) are negligible

	Clean		Trans	Transition		uted
	Mean	Range	Mean	Range	Mean	Range
I. Gaseous pollutants (ppb)		-		-		-
SO ₂	28±17	1.0-86	54±22	17-191	78±31	16-203
NOX	44±49	5.0-264	76±51	15-300	92±39	25-245
O ₃	7.4±7.0	0.0-26	4.1±4.7	0.4-11	4.1±2.4	0.6-9.6
NH ₃	12±7.4	4.7-67	17±7.7	7.6-35	23±8.3	9.3-61
HONO	1.3±1.0	0.2-5.4	2.1±1.3	0.2-6.5	2.7±1.8	0.3-10
II. Inorganic ions, Fe, Mn a	and organic m	natter in PM _{2.5} ((µg m ⁻³)			
SO4 ²⁻	5.9±2.2	2.3-10	14±4.4	10-20	38±14	20-83
NO ₃ -	8.7±4.9	1.4-25	16±6.7	3.8-35	33±10	12-55
Cl	4.0±3.7	0.0-22	9.8±5.1	2.4-28	14±6.3	2.6-34
NH4 ⁺	4.0±2.2	0.8-11	10±3.7	5.1-18	25±7.7	3.2-44
Na ⁺	3.6±3.2	0.2-8.4	4.5±3.2	0.5-17	4.2±2.7	0.5-17
K ⁺	1.3±0.7	0.3-4.1	3.1±1.2	1.3-7.0	4.6±1.4	1.8-8.3
Mg ²⁺ Ca ²⁺	0.2±0.1	0.1-0.7	0.3±0.1	0.0-0.7	0.3±0.1	0.0-0.8
Ca ²⁺	1.6±1.0	0.3-6.3	2.4±1.2	0.0-5.3	2.3±1.2	0.2-5.9
Tetal ions	29 ± 13	6.8-63	60+19	34-97	121 ± 32	65-199
Fe (μg m ⁻³)	0.82±0.29	0.37-1.13	1.51±0.70	0.60-3.0	1.76±0.66	0.79-2.79
Mn (µg m ⁻³)	0.04±0.04	0.00-0.10	0.11±0.08	0.04-0.35	0.15 ± 0.07	0.08-0.29
Water-soluble Fe (ng m ⁻³)	1.5 ± 2.1	0.0-6.1	4.6±3.9	0.0-14	16±5.1	7.3-23
Water-soluble Mn (ng m ⁻³)	10±2.1	3.8-20	21±8.7	11-40	41±16	17-70
Organic matter (OM)	35±15	7.0-70	99±33	38-163	177±39	116-288
pH	6.70±1.40	4.43-11.0	6.04±1.24	4.16-8.03	6.96±1.33	4.14-8.16
III. PM _{2.5} and meteorologic	al parameter	s				
PM _{2.5} (μg m ⁻³)	43±18	8.0-74	139±65	76-613	250±120	101-839
T (^O C)	5.7±4.1	-2.0-17	4.1±4.0	-2.3-11	4.1±4.4	-3.1-14
RH (%)	46±18	14-94	56±17	26-93	68±14	41-93
Visibility (km)	8.9±3.4	3.2-17	6.1±2.8	2.4-12	3.2±1.1	1.4 - 7.2

Table S1. Gaseous and PM pollutants and meteorological parameters during Xi'an 2012

Experimental simulation : SO_2 (g) oxidation by NO_2 (g) in bulk solution

Lab experiment: in a reaction cell covered with aluminum foil (20°C) (1) SO2 (g) + NO2 (g) + H2O (2) SO2 (g) + NO2 (g) + NH3·H2O (3%)

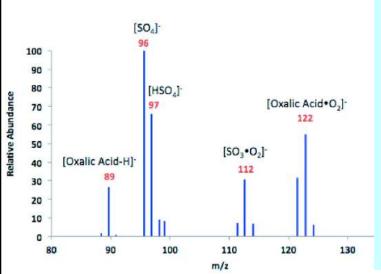

Experimental run	SO ₂ (350 ppm)	NO ₂ (350 ppm)	Water	$3 \text{ wt } \% \text{ NH}_3$	Integrated sulfate desorption peak a rea (x 10⁶ cp s)
1 (3)	$\operatorname{In} N_2$	In N ₂		Х	6.8±2.6
2 (3)	$\operatorname{In} N_2$	$\ln N_2$	Х		1.0 ± 4.3
3 (1)	In air	In air	\checkmark	Х	6.5
4 (1)	In air	In air	х		10.0

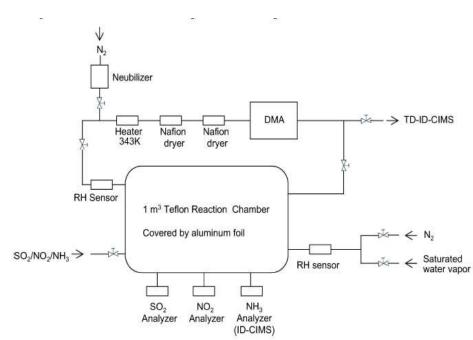
 Table S3. Detection of sulfate formation in the reaction cell

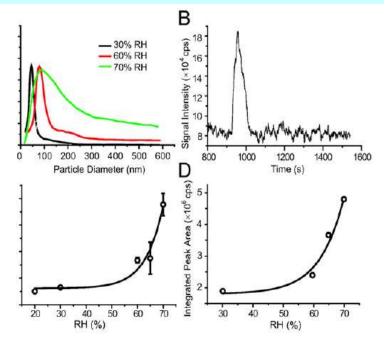
The symbols " $\sqrt{}$ " and "x" indicate whether a water or NH₃ solution was used and not used in the exposure, respectively. The number in parenthesis on the right column denotes the number of repeating experiments.

Results and conclusion: (1)SO₂ can rapidly be oxidized by NO₂ into SO₄²⁻ (2)NH₃ could promote the reaction (3) O₂ does not take an important role in the SO₂ conversion process

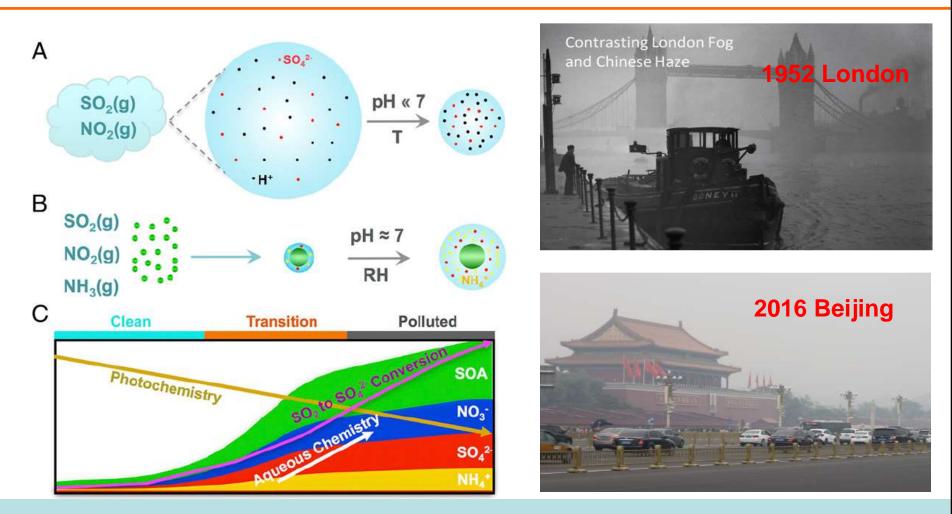
Smog chamber simulation : SO₂+NO₂

Using 1 m3 PTFE chamber covered completely with aluminium foil:

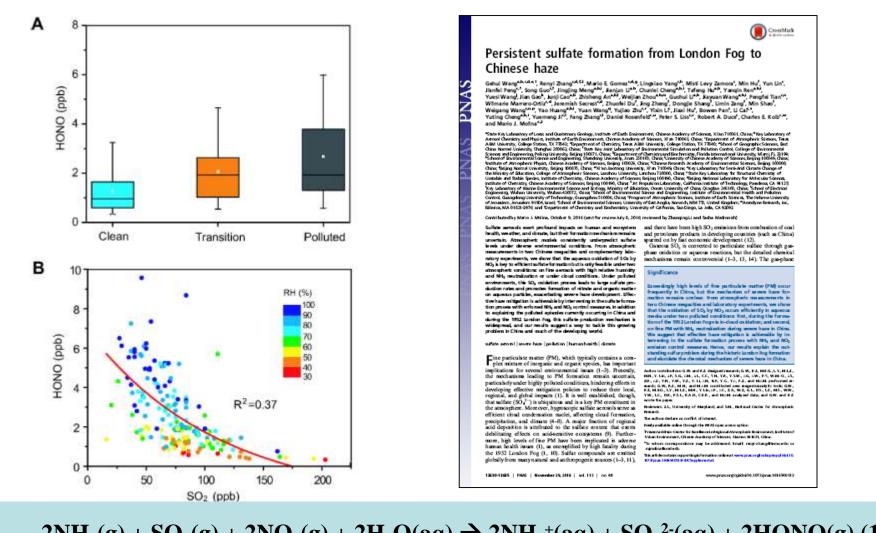

(1) 45 nm seed (oxalic acid)


A

(2)100 ppm SO2/NO2/NH3 under different RH conditions for 1 hour


Measure the dry particle size before and after the reaction/ detect the chemical composition

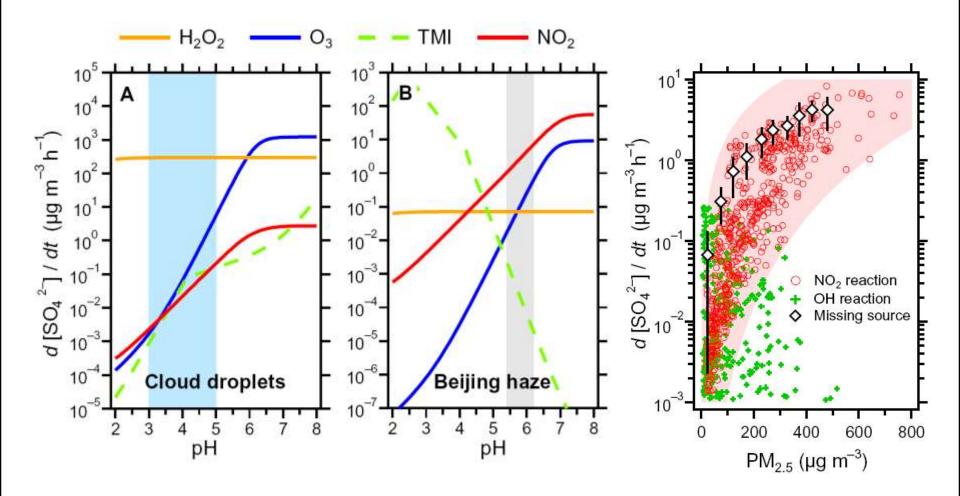
Size growth and sulfate signal can only be seen when seeds, SO2,NO2, NH3 and high RH are all available for the reaction


London Fog vs Chinese Haze

 $SO_2(g) + 2NO_2(g) + 2H_2O(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq) + 2HONO(g)$ (A)

 $2NH_3(g) + SO_2(g) + 2NO_2(g) + 2H_2O(aq) \rightarrow 2NH_4^+(aq) + SO_4^{2-}(aq) + 2HONO(g)$ (B)

Wang et al., PNAS 2016 "Persistent sulfate formation from Lodon fog to Chinese haze"


 $2NH_{3}(g) + SO_{2}(g) + 2NO_{2}(g) + 2H_{2}O(aq) \rightarrow 2NH_{4}^{+}(aq) + SO_{4}^{2-}(aq) + 2HONO(g) (1)$ $SO_{2}(g) + 2NO_{2}(g) + 2H_{2}O(aq) \rightarrow 2H^{+}(aq) + SO_{4}^{2-}(aq) + 2HONO(g) (2)$

	Average [SO ₄ ²⁻] (μg m ⁻³)	RH (%)	N (x10 ⁴) (cm ⁻³)	Average D _p (nm)	$(\times 10^{-5})$ (cm ² cm ⁻³)	[SO ₂ (g)] (ppb)	d[SO ₄ ²⁻] (μg m ⁻³)	dt (hr)	$\gamma\pm1\sigma$
Clean	4	21	7.5	75.0	1.3	16.3	3.0	7.2	$(1.6\pm0.7)\times10^{-5}$
Transition	14	41	9.0	114.2	3.7	24.2	12.7	6.0	(2.1±1.6) ×10 ⁻⁵
Polluted	26	56	8.1	116.2	3.4	16.2	14.7	7.0	(4.5±1.1) ×10 ⁻⁵

Table S5. Uptake coefficient (γ) of SO₂ on aerosols during Beijing 2015

Table S6. Uptake coefficient (γ) of SO₂ on oxalic acid particles in the reaction chamber

RH (%)	<i>D</i> _o (nm)	D_p/D_o	N (cm ⁻³)	$(\times 10^{-5})$ (cm ² cm ⁻³)	[SO ₂ (g)] (ppb)	dt (min)	$\gamma\pm 1\sigma$
30	45	1.06	1.0×10^{3}	1.3	250	60	$(6.7 \pm 9.1) \times 10^{-1}$
65	45	1.5	1.0×10^{3}	4.0	250	60	(8.3±5.7) ×10 ⁻⁵
70	45	2.31	1.0×10^{3}	3.4	250	60	$(3.9 \pm 1.2) \times 10^{-4}$

Cheng et al., Science Advances (2016)

Max Plank Institute of Chemistry: Dr. Chen et al using WRF-CMAQ model to simulate the aqueous production of SO42-, demonstrating the most important role of SO2 oxidation by NO2 in Beijing haze formation process

Jhank you for your attention !